Improved Bound on Vertex Degree Version of Erdős Matching Conjecture

Hongliang Lu

Xi'an Jiaotong University

Joint work with Mingyang Guo and Yaolin Jiang

Guangzhou

April 12, 2021

Definitions and Notations

- For a set S and an integer $k \ge 1$, $\binom{S}{k} = \{e \subseteq S \mid |e| = k\}$;
- For an integer $n \ge 1$, $[n] = \{1, 2, \dots, n\}$;

• A hypergraph H consists of a vertex set V(H) and an edge set E(H) whose members are subsets of V(H). H is k-uniform if $E(H) \subseteq \binom{V(H)}{k}$. It is also called a k-graph.

- A hypergraph H consists of a vertex set V(H) and an edge set E(H) whose members are subsets of V(H). H is k-uniform if $E(H) \subseteq \binom{V(H)}{k}$. It is also called a k-graph.
- A matching in H is a subset of E(H) consisting of pairwise disjoint edges. A matching M of a k-graph is called maximum matching if for any matching M', $|M'| \leq |M|$.

- A hypergraph H consists of a vertex set V(H) and an edge set E(H) whose members are subsets of V(H). H is k-uniform if $E(H) \subseteq \binom{V(H)}{k}$. It is also called a k-graph.
- A *matching* in H is a subset of E(H) consisting of pairwise disjoint edges. A matching M of a k-graph is called *maximum matching* if for any matching M', $|M'| \leq |M|$.
- A perfect matching in H is a matching of H that covers all the vertices of H.

• A fractional matching in a k-graph H=(V,E) is a function $f:E\to [0,1]$ of weights of edges, such that for each $v\in V$ we have

$$\sum_{e \in E: v \in e} f(e) \le 1.$$

• A fractional matching in a k-graph H=(V,E) is a function $f:E\to [0,1]$ of weights of edges, such that for each $v\in V$ we have

$$\sum_{e \in E: v \in e} f(e) \le 1.$$

• The size of fractional matching f is $\sum_{e \in E} f(e)$.

• A fractional matching in a k-graph H=(V,E) is a function $f:E\to [0,1]$ of weights of edges, such that for each $v\in V$ we have

$$\sum_{e \in E: v \in e} f(e) \le 1.$$

- The size of fractional matching f is $\sum_{e \in E} f(e)$.
- A fractional matching f of H is \max if $\sum_{e \in E} f(e) \ge \sum_{e \in E} g(e)$ for any fractional matching g of H.

• A fractional matching in a k-graph H=(V,E) is a function $f:E\to [0,1]$ of weights of edges, such that for each $v\in V$ we have

$$\sum_{e \in E: v \in e} f(e) \le 1.$$

- The size of fractional matching f is $\sum_{e \in E} f(e)$.
- A fractional matching f of H is \max if $\sum_{e \in E} f(e) \ge \sum_{e \in E} g(e)$ for any fractional matching g of H.
- ullet f is a fractional perfect matching if it has size |V|/k.

Complexity

- Fractional Matching Problem is a Linear Programming Problem; so it is a P-problem;
- Matching Problem in 2-graph is P-problem;
 Tutte's Theorem, Gallai-Edmonds Structure Theorem...
- When $k \ge 3$, Matching Problem in k-graphs is NPC.

Dirac's Theorem

- It is natural to study degree conditions that guarantee a perfect matching (or near perfect matching, or fractional perfect matching or rainbow matching or stability) in k-graphs (or l-partite k-graphs, where $k \leq l$)
- The size of a maximum matching in regular k-graphs.

• For $S \in \binom{V(H)}{r}$ and $T \in \binom{V(H)}{k-r}$, if $S \cup T \in E(H)$, then we say that S is adjacent with T.

- For $S \in \binom{V(H)}{r}$ and $T \in \binom{V(H)}{k-r}$, if $S \cup T \in E(H)$, then we say that S is adjacent with T.
- For $r \in \{0,1,...,k-1\}$ and $S \in \binom{V(H)}{r}$, the *neighborhood* of S in H is denoted by $N_H(S) := \{U \in \binom{V(H)-S}{k-r} : S \cup U \in E(H)\}$. The degree of S is $d_H(S) := |N_H(S)|$.

- For $S \in \binom{V(H)}{r}$ and $T \in \binom{V(H)}{k-r}$, if $S \cup T \in E(H)$, then we say that S is adjacent with T.
- For $r \in \{0,1,...,k-1\}$ and $S \in \binom{V(H)}{r}$, the *neighborhood* of S in H is denoted by $N_H(S) := \{U \in \binom{V(H)-S}{k-r} : S \cup U \in E(H)\}$. The degree of S is $d_H(S) := |N_H(S)|$.
- The *minimum r-degree* of H, denoted by $\delta_r(H)$, is

$$\min\{d_H(S) \mid S \in \binom{V(H)}{r}\}.$$

r = k - 1: minimum co-degree of H.

r=1: minimum vertex degree.

$$r = 0$$
: $\delta_0(H) = |E(H)|$.

Conjecture and Progress

Conjecture (Erdös, 1965)

Let $n \ge \max\{ks, 2k+1\}$. Let H be a k-graph with vertex set [n]. If

$$e(H) > \max\{\binom{n}{k} - \binom{n-s+1}{k}, \binom{ks-1}{k}\},\$$

then $\nu(H) \geq s$ (also $\nu_f(H) \geq s$).

Conjecture and Progress

Conjecture (Erdös, 1965)

Let $n \ge \max\{ks, 2k+1\}$. Let H be a k-graph with vertex set [n]. If

$$e(H) > \max\{\binom{n}{k} - \binom{n-s+1}{k}, \binom{ks-1}{k}\},$$

then $\nu(H) \geq s$ (also $\nu_f(H) \geq s$).

Erdös' Conjecture and Progress

- s = 2 (EKR Theorem, 1961);
- k=2 (Erdös and Gallai, 1959)
- k=3 and $n \geq 4t$ (Frankl, Rödl and Ruciński, CPC, 2012)
- k=3 and n large (Luczak and Mieczkowska, JCTA 2014)
- k=3 and all n (Frankl, DAM, 2017)
- k=3, short proof (Frankl, Rödl and Ruciński, Acta Math. Hungar., 2017)
- $n \ge 2k^3s$ (Bollobás, Daykin and Erdős, 1976)
- $n \ge 3k^2s$ (Huang, Loh and Sudakov, CPC 2012)
- $n \ge (2s+1)k s$ (Frankl, JCTA 2013) Stability version(Frankl and Kupavskii, JCTB 2019)
- $n \ge 5ks/3 2s/3$ and $s \ge s_0$ for large s_0 (Frankl and Kupavskii, 2018+)

Conjecture and Progress

Conjecture (Hán, Person, Schacht, 2009; Kuhn and Osthus, 2009)

Let $n \equiv 0 \pmod k$, and $1 \le d \le k-1$. Let H be a k-graph with vertex set [n]. If

$$\delta_d(H) > \left(\max\{\frac{1}{2}, 1 - (\frac{k-1}{k})^{k-d}\} + o(1)\right) \binom{n-d}{k-d},$$

then H has a perfect matching (also fractional perfect matching).

Conjectures and Progress: Asymptotically tight bound

Let $m_d^s(k,n)$ (or $f_d^s(k,n)$ denote the minimum integer m such that every k-graph H on n vertices with $\delta_d(H) \geq m$ has a (fractional, resp.) matching of size s. Write $f_d(k,n) = c^*\binom{n-d}{k-d}$.

 $oldsymbol{0}$ k=3, d=1, nearly tight (Han, Person and Schacht, SIAM 2009)

2

$$m_d^{n/k}(k,n) \sim \left(\max\{\frac{1}{2}, c^*\} + o(1)\right) \binom{n-d}{k-d},$$

 $(d,k) \in \{(1,4),\ (2,5),\ (1,5),\ (2,6)\ {\rm and}\ (3,7)\}.$ (Alon et.al., JTCA, 2012)

- $m{0}$ $m_d^{n/k}(k,n) \leq (rac{k-d}{k} + o(1)) {n-d \choose k-d}$ (Hán, Person, Schacht, 2009).
- \bullet $m_d^{n/k}(k,n) \leq (\frac{k-d}{k} \frac{1}{k^{k-d}} + o(1)) \binom{n-d}{k-d}$ (Markström and Ruciński, 2011)
- $m_d^{n/k}(k,n) \leq (\tfrac{k-d}{k}-\tfrac{k-d-1}{k^{k-d}}+o(1))\binom{n-d}{k-d} \text{ (Kuhn, Osthus and Townsend, 2014)}$

Conjectures and Progress: Tight bound

- k = 4, d = 1 (Khan, JCTB 2016);

Conjecture and Progress

Conjecture (Kuhn, Osthus and Townsend, 2014)

Let $n \equiv 0 \pmod k$, n > mk and $1 \le d \le k-1$. Let H be a k-graph with vertex set [n]. If

$$\delta_d(H) > \binom{n-d}{k-d} - \binom{n-m+1-d}{k-d},$$

then H has a matching of size m.

- $d=1, n \geq 2k^3s$ (Bollobás, Daykin and Erdős, 1976)
- $d = 1, n \ge 3k^2s$ (Huang and Zhao, JCTA 2017)
- **3** d = k 1 (Han, CPC 2016)
- d = k 2 and $n \neq 1 \pmod{k}$ (Lu, Yu and Yuan, SIAM, 2021)

Conjecture and Progress: Asymptotically tight bound

- $m_d^s(k,n)\sim \left(1-(1-s/n)^{k-d}\right)\binom{n-d}{k-d}$ for $d\geq k/2$ (Kühn, Osthus, and Townsend, EJC, 2014)
- $m_d^s(k,n)\sim \left(1-(1-s/n)^{k-d}\right)\binom{n-d}{k-d}$ for $d\geq 0.42k$ (Han, SIAM, 2017)
- $m_d^s(k,n)\sim \left(1-(1-s/n)^{k-d}\right)\binom{n-d}{k-d}$ for $d\geq 0.40k$ (Lu and Yu, 2018+)

Conjecture and Progress: our result

Theorem [Guo, Lu and Jiang, 2020+]

Let n,m and k be three integers such that $k\geq 3$, $n\geq 2km$ and n is sufficiently large. Let H be a k-graph on n vertices. If $\delta_1(H)>\binom{n-1}{k-1}-\binom{n-m}{k-1}$, then $\nu(H)\geq m$.

Conjecture and Progress: our result

Theorem [Guo, Lu and Jiang, 2020+]

Let n,m and k be three integers such that $k\geq 3,\ n\geq 2km$ and n is sufficiently large. Let H be a k-graph on n vertices. If $\delta_1(H)>\binom{n-1}{k-1}-\binom{n-m}{k-1}$, then $\nu(H)\geq m$.

Proof Sketch

Definition

If $|E(H(n,m)) - E(H)| \le \varepsilon n^{k+1}$, then we call $\mathcal F$ is ε -close to H(n,m).

Case 1 H is ε -close to extremal graph $\mathcal{H}(n,m)$

Case 2 H is not $\varepsilon\text{-close}$ to extremal graph H(n,m)

Let $\varepsilon \ll c \ll 1/k$ and n - km > cn.

- If H has a vertex v of degree at least $\binom{n-1}{k-1} \binom{n-km-1}{k-1}$, it is sufficient to show that H-v has a matching of size m-1;
- ② Else if $\Delta(H) < \binom{n-1}{k-1} \binom{n-km-1}{k-1}$, then we have

$$|E(H(n,m)) \setminus E(H)| > \varepsilon n^k,$$

a contradiction.

Construction

Let $0 < \alpha \ll \varepsilon$ and let $t = (\frac{1}{k-1} - \alpha)(n - km)$. Let $Q = \{v_1, \dots, v_t\}$. Let \mathcal{H} be a k-graph with vertex set $Q \cup [n]$ and edge set

$$E(\mathcal{H}) = E(H) \cup \{e \in \binom{Q \cup [n]}{k} \mid e \cap Q \neq \emptyset\}.$$

For completing Step 2, we need the following lemma.

Lemma (Frankl and Rödl, 1985)

For any γ, k , there exist large D and τ such that the following result holds. Every k-graph on n vertices with

$$(1-\tau)D < d_G(v) < (1+\tau)D$$
 for all $v \in V(G)$

and

$$d_G(\{x,y\}) < \tau D$$
 for any two vertices $x,y \in V(G)$

contains a matching covering all but at most γn vertices.

For completing Step 2, we need the following lemma.

Lemma (Frankl and Rödl, 1985)

For any γ, k , there exist large D and τ such that the following result holds. Every k-graph on n vertices with

$$(1 - \tau)D < d_G(v) < (1 + \tau)D$$
 for all $v \in V(G)$

and

$$d_G(\{x,y\}) < \tau D$$
 for any two vertices $x,y \in V(G)$

contains a matching covering all but at most γn vertices.

So we need to show that $\mathcal H$ has a spanning subgraph F such that $(1-\tau)D < d_F(v) < (1+\tau)D$ and $d_F(\{x,y\}) < \tau D$.

Proof Sketch

Let $h: E(\mathcal{H}) \to [0,1]$ such that

$$\sum_{v \in e} h(e) \sim D \text{ for all } v \in V(\mathcal{H})$$

and

$$\sum_{\{x,y\}\subseteq e\in E(\mathcal{H})} h(e) \leq o(D) \quad \text{for any pair } x,y\in V(\mathcal{H}).$$

Proof Sketch

Let $h: E(\mathcal{H}) \to [0,1]$ such that

$$\sum_{v \in e} h(e) \sim D \text{ for all } v \in V(\mathcal{H})$$

and

$$\sum_{\{x,y\}\subseteq e\in E(\mathcal{H})} h(e) \leq o(D) \quad \text{for any pair } x,y\in V(\mathcal{H}).$$

Randomly choose edge e with probability h(e), the resulted random graph ${\cal F}$ satisfies:

$$\mathbb{E}d_F(v) \sim (1 + o(1))D$$
 and $\mathbb{E}d_F(\{x,y\}) \leq o(D)$

for all $v, x, y \in V(\mathcal{F})$.

Proof Sketch: how to find such function h

Observation

If we may find $r=n/\ln n$ fractional perfect matchings f_1,\dots,f_r such that

$$\sum_{i=1}^{r} \sum_{\{x,y\} \subseteq e} f_i(e) \le 2 \quad \text{for any } \{x,y\} \in \binom{V(H)}{2}, \tag{1}$$

then $h = \sum_{i=1}^{r} f_i$ is a desired function.

Han-Kohayakawa-Person: Greedily Strategy

Suppose that we have f_1,\ldots,f_s , where s< r. If for $\{x,y\}\in \binom{V(\mathcal{H})}{2}$, $\sum\limits_{i=1}^r\sum\limits_{\{x,y\}\subseteq e}f_i(e)>2$, then we delete all edges containing $\{x,y\}$.

Proof Sketch: how to find such function h

Write $\psi_s = \sum_{i=1}^s f_s$. Define

$$A_s = \{ \{x, y\} \in \binom{V(\mathcal{H})}{2} \mid \sum_{\{x, y\} \subseteq e} \psi_s(e) \ge 2 \}$$

Let G be a graph with vertex set $V(\mathcal{H})$ and edge set A_s . Since $\sum_{x \in e} \psi_s(e) = s < n/\ln n$, then $\triangle(G) \le (k-1)s < (k-1)n/\ln n$.

Proof Sketch: how to find such function h

Write $\psi_s = \sum_{i=1}^s f_s$. Define

$$A_s = \{\{x, y\} \in \binom{V(\mathcal{H})}{2} \mid \sum_{\{x, y\} \subseteq e} \psi_s(e) \ge 2\}$$

Let G be a graph with vertex set $V(\mathcal{H})$ and edge set A_s . Since $\sum_{x \in e} \psi_s(e) = s < n/\ln n$, then $\triangle(G) \le (k-1)s < (k-1)n/\ln n$.

Let

$$E_s = \{e \in E(\mathcal{H}) \mid \exists \{x, y\} \in A_s \text{ s.t. } \{x, y\} \subseteq e\}.$$

Then

$$\triangle(\mathcal{H} - E_s) \ge \binom{n-1}{k-1} - \binom{n-m}{k-1} - ((k-1)n/\ln n) * n^{k-2}.$$

Finding f_1 – More Definitions

Definition of Fractional Vertex Cover

Let $\omega:V(G)\to [0,1]$ such that $\sum_{x\in e}\omega(x)\geq 1$ for all $e\in E(G)$. Then ω is called a fractional vertex cover

Minimum Fractional Vertex Cover

 ω is called minimum fractional vertex cover if $\sum_{e\in E(G)}\omega(e)\leq \sum_{e\in E(G)}\omega'(e)$ for any fractional cover $\omega'.$

 $\sum_{x \in V(G)} \omega(x)$ is called the size of vertex cover ω .

Let vc(G) denote the size of minimum fractional vertex cover of G.

• Let $\omega: V(\mathcal{H}) \to [0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega(v_1) \geq \cdots \geq \omega(v_t)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.

- Let $\omega: V(\mathcal{H}) \to [0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega(v_1) \geq \cdots \geq \omega(v_t)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.
- $\textcircled{ } \ \, \mathsf{Let} \,\, Cl(\mathcal{H}) \,\, \mathsf{be} \,\, \mathsf{a} \,\, k\text{-graph with vertex set} \,\, V(\mathcal{H}) = [n] \cup Q \,\, \mathsf{and} \,\, \mathsf{edge} \,\, \mathsf{set} \,\,$

$$E(Cl(\mathcal{H})) = \{ S \in \binom{Q \cup [n]}{k} \mid \sum_{x \in S} \omega(x) \ge 1 \}.$$

- Let $\omega: V(\mathcal{H}) \to [0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega(v_1) \geq \cdots \geq \omega(v_t)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.
- **②** Let $Cl(\mathcal{H})$ be a k-graph with vertex set $V(\mathcal{H}) = [n] \cup Q$ and edge set

$$E(Cl(\mathcal{H})) = \{S \in \binom{Q \cup [n]}{k} \mid \sum_{x \in S} \omega(x) \ge 1\}.$$

 $oldsymbol{0}$ \mathcal{H} is a subgraph of $Cl(\mathcal{H})$ and

$$\begin{split} \sum_{v \in V(\mathcal{H})} \omega(v) &= vc(\mathcal{H}) = \nu_f(\mathcal{H}) \\ &\leq \nu_f(Cl(\mathcal{H}) = vc(Cl(\mathcal{H}))) \leq \sum_{v \in V(\mathcal{H})} \omega(v). \end{split}$$

- Let $\omega: V(\mathcal{H}) \to [0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega(v_1) \geq \cdots \geq \omega(v_t)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.
- $\ \, \bullet \ \, \mathrm{Let} \,\, Cl(\mathcal H)$ be a k-graph with vertex set $V(\mathcal H)=[n]\cup Q$ and edge set

$$E(Cl(\mathcal{H})) = \{ S \in \binom{Q \cup [n]}{k} \mid \sum_{x \in S} \omega(x) \ge 1 \}.$$

 $oldsymbol{0}$ \mathcal{H} is a subgraph of $Cl(\mathcal{H})$ and

$$\begin{split} \sum_{v \in V(\mathcal{H})} \omega(v) &= vc(\mathcal{H}) = \nu_f(\mathcal{H}) \\ &\leq \nu_f(Cl(\mathcal{H}) = vc(Cl(\mathcal{H}))) \leq \sum_{v \in V(\mathcal{H})} \omega(v). \end{split}$$

 \bullet So it is sufficient to show that $Cl(\mathcal{H})$ has a (fractional) perfect matching.

- ② If $N_{Cl(\mathcal{H})}(\{n\}) Q$ has a matching of size $\frac{1}{k}(n-(k-1)t)$, then $Cl(\mathcal{H}) Q$ has a matching M of size $\frac{1}{k}(n-(k-1)t)$; we may extend M into a perfect matching of $Cl(\mathcal{H})$.

- ② If $N_{Cl(\mathcal{H})}(\{n\}) Q$ has a matching of size $\frac{1}{k}(n-(k-1)t)$, then $Cl(\mathcal{H}) Q$ has a matching M of size $\frac{1}{k}(n-(k-1)t)$; we may extend M into a perfect matching of $Cl(\mathcal{H})$.
- $\textbf{ If } N_{Cl(\mathcal{H})}(\{n\}) Q \text{ contains no matching of size } \tfrac{1}{k}(n-(k-1)t), \\ \text{ then } N_{Cl(\mathcal{H})}(\{n\}) Q \text{ is close to } H(n,m); \text{ [Lu, Yu and Yuan]}$

- ② If $N_{Cl(\mathcal{H})}(\{n\}) Q$ has a matching of size $\frac{1}{k}(n-(k-1)t)$, then $Cl(\mathcal{H}) Q$ has a matching M of size $\frac{1}{k}(n-(k-1)t)$; we may extend M into a perfect matching of $Cl(\mathcal{H})$.
- $\textbf{ If } N_{Cl(\mathcal{H})}(\{n\}) Q \text{ contains no matching of size } \tfrac{1}{k}(n-(k-1)t), \\ \text{ then } N_{Cl(\mathcal{H})}(\{n\}) Q \text{ is close to } H(n,m); \text{ [Lu, Yu and Yuan]}$
- $N_{Cl(\mathcal{H})}(\{n\})$ is close to H(n+t,m+t);

- $\textbf{9} \ \, \text{If} \, \, N_{Cl(\mathcal{H})}(\{n\}) Q \, \, \text{has a matching of size} \, \, \frac{1}{k}(n-(k-1)t), \, \, \text{then} \, \, \\ Cl(\mathcal{H}) Q \, \, \text{has a matching} \, M \, \, \text{of size} \, \frac{1}{k}(n-(k-1)t); \\ \text{we may extend} \, \, M \, \, \text{into a perfect matching of} \, \, Cl(\mathcal{H}).$
- ① If $N_{Cl(\mathcal{H})}(\{n\}) Q$ contains no matching of size $\frac{1}{k}(n-(k-1)t)$, then $N_{Cl(\mathcal{H})}(\{n\}) Q$ is close to H(n,m); [Lu, Yu and Yuan]
- $N_{Cl(\mathcal{H})}(\{n\})$ is close to H(n+t,m+t);
- We greedily find a matching M_1 . Then we find a matching M_2 of size $\frac{1}{k-1}(n+t)-|M_1|$ in $N_{Cl(H)-V(M_1)}(n)$ and so obtain a matching M_2' of $Cl(H)-V(M_1)-\{n\}$;

- ② If $N_{Cl(\mathcal{H})}(\{n\}) Q$ has a matching of size $\frac{1}{k}(n-(k-1)t)$, then $Cl(\mathcal{H}) Q$ has a matching M of size $\frac{1}{k}(n-(k-1)t)$; we may extend M into a perfect matching of $Cl(\mathcal{H})$.
- $\textbf{ If } N_{Cl(\mathcal{H})}(\{n\}) Q \text{ contains no matching of size } \tfrac{1}{k}(n-(k-1)t), \\ \text{ then } N_{Cl(\mathcal{H})}(\{n\}) Q \text{ is close to } H(n,m); \text{ [Lu, Yu and Yuan]}$
- \bullet $N_{Cl(\mathcal{H})}(\{n\})$ is close to H(n+t,m+t);
- **③** We greedily find a matching M_1 . Then we find a matching M_2 of size $\frac{1}{k-1}(n+t)-|M_1|$ in $N_{Cl(H)-V(M_1)}(n)$ and so obtain a matching M_2' of $Cl(H)-V(M_1)-\{n\}$;
- **1** We extend $M_1 \cup M_2'$ into a perfect matching of \mathcal{H} .

- ② If $N_{Cl(\mathcal{H})}(\{n\}) Q$ has a matching of size $\frac{1}{k}(n-(k-1)t)$, then $Cl(\mathcal{H}) Q$ has a matching M of size $\frac{1}{k}(n-(k-1)t)$; we may extend M into a perfect matching of $Cl(\mathcal{H})$.
- ① If $N_{Cl(\mathcal{H})}(\{n\}) Q$ contains no matching of size $\frac{1}{k}(n-(k-1)t)$, then $N_{Cl(\mathcal{H})}(\{n\}) Q$ is close to H(n,m); [Lu, Yu and Yuan]
- $N_{Cl(\mathcal{H})}(\{n\})$ is close to H(n+t,m+t);
- **③** We greedily find a matching M_1 . Then we find a matching M_2 of size $\frac{1}{k-1}(n+t)-|M_1|$ in $N_{Cl(H)-V(M_1)}(n)$ and so obtain a matching M_2' of $Cl(H)-V(M_1)-\{n\}$;
- **1** We extend $M_1 \cup M_2'$ into a perfect matching of \mathcal{H} .
- $oldsymbol{0}$ Thus $\mathcal H$ has a fractional perfect matching.

Thanks for your attention!