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Definitions and Notations

For a set S and an integer k ≥ 1,
(
S
k

)
= {e ⊆ S | |e| = k};

For an integer n ≥ 1, [n] = {1, 2, . . . , n};
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Notations

A hypergraph H consists of a vertex set V (H) and an edge set E(H)
whose members are subsets of V (H). H is k-uniform if E(H) ⊆(
V (H)

k

)
. It is also called a k-graph.

A matching in H is a subset of E(H) consisting of pairwise disjoint
edges. A matching M of a k-graph is called maximum matching if
for any matching M ′, |M ′| ≤ |M |.

A perfect matching in H is a matching of H that covers all the vertices
of H.
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Notations

A fractional matching in a k-graph H = (V,E) is a function f : E →
[0, 1] of weights of edges, such that for each v ∈ V we have∑

e∈E:v∈e
f(e) ≤ 1.

The size of fractional matching f is
∑

e∈E f(e).

A fractional matching f of H is maximum if
∑

e∈E f(e) ≥
∑

e∈E g(e)
for any fractional matching g of H.

f is a fractional perfect matching if it has size |V |/k.
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Complexity

Fractional Matching Problem is a Linear Programming Problem; so it
is a P-problem;

Matching Problem in 2-graph is P-problem;
Tutte’s Theorem, Gallai-Edmonds Structure Theorem...

When k ≥ 3, Matching Problem in k-graphs is NPC.
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Dirac’s Theorem

It is natural to study degree conditions that guarantee a perfec-
t matching (or near perfect matching, or fractional perfect
matching or rainbow matching or stability) in k-graphs (or l-
partite k-graphs, where k ≤ l)

The size of a maximum matching in regular k-graphs.
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Notations

For S ∈
(
V (H)

r

)
and T ∈

(
V (H)
k−r

)
, if S ∪ T ∈ E(H), then we say that

S is adjacent with T .

For r ∈ {0, 1, ..., k − 1} and S ∈
(
V (H)

r

)
, the neighborhood of S in

H is denoted by NH(S) := {U ∈
(
V (H)−S

k−r
)

: S ∪ U ∈ E(H)}. The
degree of S is dH(S) := |NH(S)|.

The minimum r-degree of H, denoted by δr(H), is

min{dH(S) | S ∈
(
V (H)

r

)
}.

r = k − 1: minimum co-degree of H.

r = 1: minimum vertex degree.

r = 0: δ0(H) = |E(H)|.
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Conjecture and Progress

Conjecture (Erdös, 1965)

Let n ≥ max{ks, 2k + 1}. Let H be a k-graph with vertex set [n]. If

e(H) > max{
(
n

k

)
−
(
n− s+ 1

k

)
,

(
ks− 1

k

)
},

then ν(H) ≥ s (also νf (H) ≥ s).
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Erdös’ Conjecture and Progress

s = 2 (EKR Theorem, 1961);

k = 2 (Erdös and Gallai, 1959)

k = 3 and n ≥ 4t (Frankl, Rödl and Ruciński, CPC, 2012)

k = 3 and n large (Luczak and Mieczkowska, JCTA 2014)

k = 3 and all n (Frankl, DAM, 2017)

k = 3, short proof (Frankl, Rödl and Ruciński, Acta Math. Hungar.,
2017)

n ≥ 2k3s (Bollobás, Daykin and Erdös, 1976)

n ≥ 3k2s (Huang, Loh and Sudakov, CPC 2012)

n ≥ (2s+ 1)k − s (Frankl, JCTA 2013)
Stability version(Frankl and Kupavskii, JCTB 2019)

n ≥ 5ks/3 − 2s/3 and s ≥ s0 for large s0 (Frankl and Kupavskii,
2018+)

Hongliang Lu Improved Bound on Vertex Degree Version of Erdős Matching Conjecture



Conjecture and Progress

Conjecture (Hán, Person, Schacht, 2009; Kuhn and Osthus, 2009)

Let n ≡ 0 (mod k), and 1 ≤ d ≤ k − 1. Let H be a k-graph with vertex set
[n]. If

δd(H) >

(
max{1

2
, 1− (

k − 1

k
)k−d}+ o(1)

)(
n− d
k − d

)
,

then H has a perfect matching (also fractional perfect matching).
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Conjectures and Progress: Asymptotically tight bound

Let ms
d(k, n) (or fsd (k, n) denote the minimum integer m such that every

k-graph H on n vertices with δd(H) ≥ m has a (fractional, resp.)
matching of size s. Write fd(k, n) = c∗

(
n−d
k−d
)
.

1 k = 3, d = 1, nearly tight (Han, Person and Schacht, SIAM 2009)

2

m
n/k
d (k, n) ∼

(
max{1

2
, c∗}+ o(1)

)(
n− d
k − d

)
,

(d, k) ∈ {(1, 4), (2, 5), (1, 5), (2, 6) and (3, 7)}. (Alon et.al., JTCA,
2012)

3 m
n/k
d (k, n) ≤ (k−d

k + o(1))
(
n−d
k−d
)

(Hán, Person, Schacht, 2009).

4 m
n/k
d (k, n) ≤ (k−d

k −
1

kk−d + o(1))
(
n−d
k−d
)

(Markström and Ruciński,
2011)

5 m
n/k
d (k, n) ≤ (k−d

k −
k−d−1
kk−d +o(1))

(
n−d
k−d
)

(Kuhn, Osthus and Townsend,
2014)

Hongliang Lu Improved Bound on Vertex Degree Version of Erdős Matching Conjecture



Conjectures and Progress: Tight bound

1 d = k − 1 (Rödl, Ruciński and Szemerédi, JCTA 2009)

2 d > k/2 (Treglown and Zhao; JCTA 2012, 2013)

3 k = 3, d = 1 (Kuhn, Osthus and Treglown, JCTB 2013; Khan, SIAM
2013)

4 k = 4, d = 1 (Khan, JCTB 2016);

5 d = 1, s = 2 (Huang and Zhao, JCTA 2017)
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Conjecture and Progress

Conjecture (Kuhn, Osthus and Townsend, 2014)

Let n ≡ 0 (mod k), n > mk and 1 ≤ d ≤ k − 1. Let H be a k-graph
with vertex set [n]. If

δd(H) >

(
n− d
k − d

)
−
(
n−m+ 1− d

k − d

)
,

then H has a matching of size m.

1 d = 1, n ≥ 2k3s (Bollobás, Daykin and Erdös, 1976)

2 d = 1, n ≥ 3k2s (Huang and Zhao, JCTA 2017)

3 d = k − 1 (Han, CPC 2016)

4 d = k − 2 and n 6= 1 (mod k) (Lu, Yu and Yuan, SIAM, 2021)

5 d > k/2 and m < n/k − k2 (Lu, Yu and Yuan, SIAM, 2021)
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Conjecture and Progress: Asymptotically tight bound

ms
d(k, n) ∼

(
1− (1− s/n)k−d

) (
n−d
k−d
)

for d ≥ k/2 (Kühn, Osthus,
and Townsend, EJC, 2014)

ms
d(k, n) ∼

(
1− (1− s/n)k−d

) (
n−d
k−d
)

for d ≥ 0.42k (Han, SIAM,
2017)

ms
d(k, n) ∼

(
1− (1− s/n)k−d

) (
n−d
k−d
)

for d ≥ 0.40k (Lu and Yu,
2018+)
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Conjecture and Progress: our result

Theorem [Guo, Lu and Jiang, 2020+]

Let n,m and k be three integers such that k ≥ 3, n ≥ 2km and n is
sufficiently large. Let H be a k-graph on n vertices. If δ1(H) >

(
n−1
k−1
)
−(

n−m
k−1

)
, then ν(H) ≥ m.
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Proof Sketch

Definition

If |E(H(n,m))− E(H)| ≤ εnk+1, then we call F is ε-close to H(n,m).

Case 1 H is ε-close to extremal graph H(n,m)

Case 2 H is not ε-close to extremal graph H(n,m)
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Proof Sketch-Case 1

Let ε� c� 1/k and n− km > cn.

1 If H has a vertex v of degree at least
(
n−1
k−1
)
−
(
n−km−1

k−1
)
, it is sufficient

to show that H − v has a matching of size m− 1;

2 Else if ∆(H) <
(
n−1
k−1
)
−
(
n−km−1

k−1
)
, then we have

|E(H(n,m)) \ E(H)| > εnk,

a contradiction.
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Proof Sketch-Case 2

Construction

Let 0 < α � ε and let t = ( 1
k−1 − α)(n − km). Let Q = {v1, . . . , vt}.

Let H be a k-graph with vertex set Q ∪ [n] and edge set

E(H) = E(H) ∪ {e ∈
(
Q ∪ [n]

k

)
| e ∩Q 6= ∅}.
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Proof Sketch-Case 2

For completing Step 2, we need the following lemma.

Lemma (Frankl and Rödl, 1985)

For any γ, k, there exist large D and τ such that the following result holds. Every
k-graph on n vertices with

(1− τ)D < dG(v) < (1 + τ)D for all v ∈ V (G)

and
dG({x, y}) < τD for any two vertices x, y ∈ V (G)

contains a matching covering all but at most γn vertices.

So we need to show that H has a spanning subgraph F such that
(1− τ)D < dF (v) < (1 + τ)D and dF ({x, y}) < τD.

Hongliang Lu Improved Bound on Vertex Degree Version of Erdős Matching Conjecture
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Proof Sketch

Let h : E(H)→ [0, 1] such that∑
v∈e

h(e) ∼ D for all v ∈ V (H)

and ∑
{x,y}⊆e∈E(H)

h(e) ≤ o(D) for any pair x, y ∈ V (H).

Randomly choose edge e with probability h(e), the resulted random
graph F satisfies:

EdF (v) ∼ (1 + o(1))D and EdF ({x, y}) ≤ o(D)

for all v, x, y ∈ V (F).
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Proof Sketch: how to find such function h

Observation

If we may find r = n/ lnn fractional perfect matchings f1, . . . , fr such
that

r∑
i=1

∑
{x,y}⊆e

fi(e) ≤ 2 for any {x, y} ∈
(
V (H)

2

)
, (1)

then h =
∑r

i=1 fi is a desired function.

Han-Kohayakawa-Person: Greedily Strategy

Suppose that we have f1, . . . , fs, where s < r. If for {x, y} ∈
(
V (H)

2

)
,

r∑
i=1

∑
{x,y}⊆e

fi(e) > 2, then we delete all edges containing {x, y}.
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Proof Sketch: how to find such function h

Write ψs =
∑s

i=1 fs. Define

As = {{x, y} ∈
(
V (H)

2

)
|
∑
{x,y}⊆e

ψs(e) ≥ 2}

Let G be a graph with vertex set V (H) and edge set As. Since∑
x∈e ψs(e) = s < n/ lnn, then 4(G) ≤ (k − 1)s < (k − 1)n/ lnn.

Let
Es = {e ∈ E(H) | ∃{x, y} ∈ As s.t. {x, y} ⊆ e}.

Then

4(H− Es) ≥
(
n− 1

k − 1

)
−
(
n−m
k − 1

)
− ((k − 1)n/ lnn) ∗ nk−2.

Hongliang Lu Improved Bound on Vertex Degree Version of Erdős Matching Conjecture
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Finding f1 – More Definitions

Definition of Fractional Vertex Cover

Let ω : V (G) → [0, 1] such that
∑

x∈e ω(x) ≥ 1 for all e ∈ E(G). Then
ω is called a fractional vertex cover

Minimum Fractional Vertex Cover

ω is called minimum fractional vertex cover if
∑

e∈E(G) ω(e) ≤∑
e∈E(G) ω

′(e) for any fractional cover ω′.

∑
x∈V (G) ω(x) is called the size of vertex cover ω.

Let vc(G) denote the size of minimum fractional vertex cover of G.
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Proof Sketch – Finding f1

1 Let ω : V (H) → [0, 1] be a minimum fractional vertex cover of H
such that ω(v1) ≥ · · · ≥ ω(vt) for 1 ≤ i ≤ t and ω(1) ≥ · · · ≥ ω(n).

2 Let Cl(H) be a k-graph with vertex set V (H) = [n]∪Q and edge set

E(Cl(H)) = {S ∈
(
Q ∪ [n]

k

)
|
∑
x∈S

ω(x) ≥ 1}.

3 H is a subgraph of Cl(H) and∑
v∈V (H)

ω(v) = vc(H) = νf (H)

≤ νf (Cl(H) = vc(Cl(H))) ≤
∑

v∈V (H)

ω(v).

4 So it is sufficient to show that Cl(H) has a (fractional) perfect match-
ing.
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Proof Sketch – Finding f1

1 Let ω : V (H) → [0, 1] be a minimum fractional vertex cover of H
such that ω(v1) ≥ · · · ≥ ω(vt) for 1 ≤ i ≤ t and ω(1) ≥ · · · ≥ ω(n).

2 Let Cl(H) be a k-graph with vertex set V (H) = [n]∪Q and edge set

E(Cl(H)) = {S ∈
(
Q ∪ [n]

k

)
|
∑
x∈S

ω(x) ≥ 1}.

3 H is a subgraph of Cl(H) and∑
v∈V (H)

ω(v) = vc(H) = νf (H)

≤ νf (Cl(H) = vc(Cl(H))) ≤
∑

v∈V (H)

ω(v).

4 So it is sufficient to show that Cl(H) has a (fractional) perfect match-
ing.

Hongliang Lu Improved Bound on Vertex Degree Version of Erdős Matching Conjecture
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Proof Sketch – Finding f1

1 NCl(H)({n}) ⊆ NCl(H)({i}) for i ∈ [n];

2 If NCl(H)({n}) − Q has a matching of size 1
k (n − (k − 1)t), then

Cl(H)−Q has a matching M of size 1
k (n− (k − 1)t);

we may extend M into a perfect matching of Cl(H).

3 If NCl(H)({n}) − Q contains no matching of size 1
k (n − (k − 1)t),

then NCl(H)({n})−Q is close to H(n,m); [Lu, Yu and Yuan]

4 NCl(H)({n}) is close to H(n+ t,m+ t);

5 We greedily find a matching M1. Then we find a matching M2 of
size 1

k−1 (n+ t)−|M1| in NCl(H)−V (M1)(n) and so obtain a matching
M ′2 of Cl(H)− V (M1)− {n};

6 We extend M1 ∪M ′2 into a perfect matching of H.

7 Thus H has a fractional perfect matching.
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Thanks for your attention!
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