Improved Bound on Vertex Degree Version of Erdős Matching Conjecture

Hongliang Lu
Xi'an Jiaotong University
Joint work with Mingyang Guo and Yaolin Jiang
Guangzhou

April 12, 2021

Definitions and Notations

- For a set S and an integer $k \geq 1,\binom{S}{k}=\{e \subseteq S| | e \mid=k\}$;
- For an integer $n \geq 1,[n]=\{1,2, \ldots, n\}$;

Notations

- A hypergraph H consists of a vertex set $V(H)$ and an edge set $E(H)$ whose members are subsets of $V(H) . H$ is k-uniform if $E(H) \subseteq$ $\binom{V(H)}{k}$. It is also called a k-graph.

Notations

- A hypergraph H consists of a vertex set $V(H)$ and an edge set $E(H)$ whose members are subsets of $V(H) . H$ is k-uniform if $E(H) \subseteq$ $\binom{V(H)}{k}$. It is also called a k-graph.
- A matching in H is a subset of $E(H)$ consisting of pairwise disjoint edges. A matching M of a k-graph is called maximum matching if for any matching $M^{\prime},\left|M^{\prime}\right| \leq|M|$.

Notations

- A hypergraph H consists of a vertex set $V(H)$ and an edge set $E(H)$ whose members are subsets of $V(H) . H$ is k-uniform if $E(H) \subseteq$ $\binom{V(H)}{k}$. It is also called a k-graph.
- A matching in H is a subset of $E(H)$ consisting of pairwise disjoint edges. A matching M of a k-graph is called maximum matching if for any matching $M^{\prime},\left|M^{\prime}\right| \leq|M|$.
- A perfect matching in H is a matching of H that covers all the vertices of H.

Notations

- A fractional matching in a k-graph $H=(V, E)$ is a function $f: E \rightarrow$ $[0,1]$ of weights of edges, such that for each $v \in V$ we have

$$
\sum_{e \in E: v \in e} f(e) \leq 1
$$

Notations

- A fractional matching in a k-graph $H=(V, E)$ is a function $f: E \rightarrow$ $[0,1]$ of weights of edges, such that for each $v \in V$ we have

$$
\sum_{e \in E: v \in e} f(e) \leq 1
$$

- The size of fractional matching f is $\sum_{e \in E} f(e)$.

Notations

- A fractional matching in a k-graph $H=(V, E)$ is a function $f: E \rightarrow$ $[0,1]$ of weights of edges, such that for each $v \in V$ we have

$$
\sum_{e \in E: v \in e} f(e) \leq 1
$$

- The size of fractional matching f is $\sum_{e \in E} f(e)$.
- A fractional matching f of H is maximum if $\sum_{e \in E} f(e) \geq \sum_{e \in E} g(e)$ for any fractional matching g of H.

Notations

- A fractional matching in a k-graph $H=(V, E)$ is a function $f: E \rightarrow$ $[0,1]$ of weights of edges, such that for each $v \in V$ we have

$$
\sum_{e \in E: v \in e} f(e) \leq 1
$$

- The size of fractional matching f is $\sum_{e \in E} f(e)$.
- A fractional matching f of H is maximum if $\sum_{e \in E} f(e) \geq \sum_{e \in E} g(e)$ for any fractional matching g of H.
- f is a fractional perfect matching if it has size $|V| / k$.

Complexity

- Fractional Matching Problem is a Linear Programming Problem; so it is a P-problem;
- Matching Problem in 2-graph is P-problem; Tutte's Theorem, Gallai-Edmonds Structure Theorem...
- When $k \geq 3$, Matching Problem in k-graphs is NPC.

Dirac's Theorem

- It is natural to study degree conditions that guarantee a perfect matching (or near perfect matching, or fractional perfect matching or rainbow matching or stability) in k-graphs (or l partite k-graphs, where $k \leq l$)
- The size of a maximum matching in regular k-graphs.

Notations

- For $S \in\binom{V(H)}{r}$ and $T \in\binom{V(H)}{k-r}$, if $S \cup T \in E(H)$, then we say that S is adjacent with T.

Notations

- For $S \in\binom{V(H)}{r}$ and $T \in\binom{V(H)}{k-r}$, if $S \cup T \in E(H)$, then we say that S is adjacent with T.
- For $r \in\{0,1, \ldots, k-1\}$ and $S \in\binom{V(H)}{r}$, the neighborhood of S in H is denoted by $N_{H}(S):=\left\{U \in\binom{V(H)-S}{k-r}: S \cup U \in E(H)\right\}$. The degree of S is $d_{H}(S):=\left|N_{H}(S)\right|$.

Notations

- For $S \in\binom{V(H)}{r}$ and $T \in\binom{V(H)}{k-r}$, if $S \cup T \in E(H)$, then we say that S is adjacent with T.
- For $r \in\{0,1, \ldots, k-1\}$ and $S \in\binom{V(H)}{r}$, the neighborhood of S in H is denoted by $N_{H}(S):=\left\{U \in\binom{V(H)-S}{k-r}: S \cup U \in E(H)\right\}$. The degree of S is $d_{H}(S):=\left|N_{H}(S)\right|$.
- The minimum r-degree of H, denoted by $\delta_{r}(H)$, is

$$
\min \left\{d_{H}(S) \left\lvert\, S \in\binom{V(H)}{r}\right.\right\}
$$

$r=k-1$: minimum co-degree of H.
$r=1$: minimum vertex degree.
$r=0: \delta_{0}(H)=|E(H)|$.

Conjecture and Progress

Conjecture (Erdös, 1965)

Let $n \geq \max \{k s, 2 k+1\}$. Let H be a k-graph with vertex set $[n]$. If

$$
e(H)>\max \left\{\binom{n}{k}-\binom{n-s+1}{k},\binom{k s-1}{k}\right\},
$$

then $\nu(H) \geq s$ (also $\nu_{f}(H) \geq s$).

Conjecture and Progress

Conjecture (Erdös, 1965)
Let $n \geq \max \{k s, 2 k+1\}$. Let H be a k-graph with vertex set $[n]$. If

$$
e(H)>\max \left\{\binom{n}{k}-\binom{n-s+1}{k},\binom{k s-1}{k}\right\},
$$

then $\nu(H) \geq s\left(\right.$ also $\left.\nu_{f}(H) \geq s\right)$.

Independent set

Erdös' Conjecture and Progress

- $s=2$ (EKR Theorem, 1961);
- $k=2$ (Erdös and Gallai, 1959)
- $k=3$ and $n \geq 4 t$ (Frankl, Rödl and Ruciński, CPC, 2012)
- $k=3$ and n large (Luczak and Mieczkowska, JCTA 2014)
- $k=3$ and all n (Frankl, DAM, 2017)
- $k=3$, short proof (Frankl, Rödl and Ruciński, Acta Math. Hungar., 2017)
- $n \geq 2 k^{3} s$ (Bollobás, Daykin and Erdös, 1976)
- $n \geq 3 k^{2} s$ (Huang, Loh and Sudakov, CPC 2012)
- $n \geq(2 s+1) k-s$ (Frankl, JCTA 2013)

Stability version(Frankl and Kupavskii, JCTB 2019)

- $n \geq 5 k s / 3-2 s / 3$ and $s \geq s_{0}$ for large s_{0} (Frankl and Kupavskii, 2018+)

Conjecture and Progress

Conjecture (Hán, Person, Schacht, 2009; Kuhn and Osthus, 2009)
Let $n \equiv 0(\bmod k)$, and $1 \leq d \leq k-1$. Let H be a k-graph with vertex set $[n]$. If

$$
\delta_{d}(H)>\left(\max \left\{\frac{1}{2}, 1-\left(\frac{k-1}{k}\right)^{k-d}\right\}+o(1)\right)\binom{n-d}{k-d}
$$

then H has a perfect matching (also fractional perfect matching).

Conjectures and Progress: Asymptotically tight bound

Let $m_{d}^{s}(k, n)$ (or $f_{d}^{s}(k, n)$ denote the minimum integer m such that every k-graph H on n vertices with $\delta_{d}(H) \geq m$ has a (fractional, resp.) matching of size s. Write $f_{d}(k, n)=c^{*}\binom{n-d}{k-d}$.
(1) $k=3, d=1$, nearly tight (Han, Person and Schacht, SIAM 2009)
(2)

$$
m_{d}^{n / k}(k, n) \sim\left(\max \left\{\frac{1}{2}, c^{*}\right\}+o(1)\right)\binom{n-d}{k-d}
$$

$(d, k) \in\{(1,4),(2,5),(1,5),(2,6)$ and $(3,7)\}$. (Alon et.al., JTCA, 2012)
(3) $m_{d}^{n / k}(k, n) \leq\left(\frac{k-d}{k}+o(1)\right)\binom{n-d}{k-d}$ (Hán, Person, Schacht, 2009).
(4) $m_{d}^{n / k}(k, n) \leq\left(\frac{k-d}{k}-\frac{1}{k^{k-d}}+o(1)\right)\binom{n-d}{k-d}$ (Markström and Ruciński, 2011)
(5) $m_{d}^{n / k}(k, n) \leq\left(\frac{k-d}{k}-\frac{k-d-1}{k^{k-d}}+o(1)\right)\binom{n-d}{k-d}$ (Kuhn, Osthus and Townsend, 2014)

Conjectures and Progress: Tight bound

(1) $d=k-1$ (Rödl, Ruciński and Szemerédi, JCTA 2009)
© $d>k / 2$ (Treglown and Zhao; JCTA 2012, 2013)
(0) $k=3, d=1$ (Kuhn, Osthus and Treglown, JCTB 2013; Khan, SIAM 2013)
(0) $k=4, d=1$ (Khan, JCTB 2016);
(0) $d=1, s=2$ (Huang and Zhao, JCTA 2017)

Conjecture and Progress

Conjecture (Kuhn, Osthus and Townsend, 2014)

Let $n \equiv 0(\bmod k), n>m k$ and $1 \leq d \leq k-1$. Let H be a k-graph with vertex set $[n]$. If

$$
\delta_{d}(H)>\binom{n-d}{k-d}-\binom{n-m+1-d}{k-d},
$$

then H has a matching of size m.
(1) $d=1, n \geq 2 k^{3} s$ (Bollobás, Daykin and Erdös, 1976)
(2) $d=1, n \geq 3 k^{2} s$ (Huang and Zhao, JCTA 2017)
(0) $d=k-1$ (Han, CPC 2016)
(9) $d=k-2$ and $n \neq 1(\bmod k)(L u, Y u$ and Yuan, SIAM, 2021)
(0) $d>k / 2$ and $m<n / k-k^{2}$ (Lu, Yu and Yuan, SIAM, 2021)

Conjecture and Progress: Asymptotically tight bound

- $m_{d}^{s}(k, n) \sim\left(1-(1-s / n)^{k-d}\right)\binom{n-d}{k-d}$ for $d \geq k / 2$ (Kühn, Osthus, and Townsend, EJC, 2014)
- $m_{d}^{s}(k, n) \sim\left(1-(1-s / n)^{k-d}\right)\binom{n-d}{k-d}$ for $d \geq 0.42 k$ (Han, SIAM, 2017)
- $m_{d}^{s}(k, n) \sim\left(1-(1-s / n)^{k-d}\right)\binom{n-d}{k-d}$ for $d \geq 0.40 k$ (Lu and Yu , 2018+)

Conjecture and Progress: our result

Theorem [Guo, Lu and Jiang, 2020+]

Let n, m and k be three integers such that $k \geq 3, n \geq 2 k m$ and n is sufficiently large. Let H be a k-graph on n vertices. If $\delta_{1}(H)>\binom{n-1}{k-1}-$ $\binom{n-m}{k-1}$, then $\nu(H) \geq m$.

Conjecture and Progress: our result

Theorem [Guo, Lu and Jiang, 2020+]

Let n, m and k be three integers such that $k \geq 3, n \geq 2 k m$ and n is sufficiently large. Let H be a k-graph on n vertices. If $\delta_{1}(H)>\binom{n-1}{k-1}-$ $\binom{n-m}{k-1}$, then $\nu(H) \geq m$.

Proof Sketch

Definition

If $|E(H(n, m))-E(H)| \leq \varepsilon n^{k+1}$, then we call \mathcal{F} is ε-close to $H(n, m)$.
Case $1 H$ is ε-close to extremal graph $\mathcal{H}(n, m)$

Case $2 H$ is not ε-close to extremal graph $H(n, m)$

Proof Sketch-Case 1

Let $\varepsilon \ll c \ll 1 / k$ and $n-k m>c n$.
(1) If H has a vertex v of degree at least $\binom{n-1}{k-1}-\binom{n-k m-1}{k-1}$, it is sufficient to show that $H-v$ has a matching of size $m-1$;
(2) Else if $\Delta(H)<\binom{n-1}{k-1}-\binom{n-k m-1}{k-1}$, then we have

$$
|E(H(n, m)) \backslash E(H)|>\varepsilon n^{k},
$$

a contradiction.

Proof Sketch-Case 2

Construction

Let $0<\alpha \ll \varepsilon$ and let $t=\left(\frac{1}{k-1}-\alpha\right)(n-k m)$. Let $Q=\left\{v_{1}, \ldots, v_{t}\right\}$. Let \mathcal{H} be a k-graph with vertex set $Q \cup[n]$ and edge set

$$
E(\mathcal{H})=E(H) \cup\left\{\left.e \in\binom{Q \cup[n]}{k} \right\rvert\, e \cap Q \neq \emptyset\right\} .
$$

Proof Sketch-Case 2

For completing Step 2, we need the following lemma.

Lemma (Frankl and Rödl, 1985)

For any γ, k, there exist large D and τ such that the following result holds. Every k-graph on n vertices with

$$
(1-\tau) D<d_{G}(v)<(1+\tau) D \text { for all } v \in V(G)
$$

and

$$
d_{G}(\{x, y\})<\tau D \text { for any two vertices } x, y \in V(G)
$$

contains a matching covering all but at most γn vertices.

Proof Sketch-Case 2

For completing Step 2, we need the following lemma.

Lemma (Frankl and Rödl, 1985)

For any γ, k, there exist large D and τ such that the following result holds. Every k-graph on n vertices with

$$
(1-\tau) D<d_{G}(v)<(1+\tau) D \text { for all } v \in V(G)
$$

and

$$
d_{G}(\{x, y\})<\tau D \text { for any two vertices } x, y \in V(G)
$$

contains a matching covering all but at most γn vertices.
So we need to show that \mathcal{H} has a spanning subgraph F such that $(1-\tau) D<d_{F}(v)<(1+\tau) D$ and $d_{F}(\{x, y\})<\tau D$.

Proof Sketch

Let $h: E(\mathcal{H}) \rightarrow[0,1]$ such that

$$
\sum_{v \in e} h(e) \sim D \text { for all } v \in V(\mathcal{H})
$$

and

$$
\sum_{, y\} \subseteq e \in E(\mathcal{H})} h(e) \leq o(D) \quad \text { for any pair } x, y \in V(\mathcal{H}) .
$$

Proof Sketch

Let $h: E(\mathcal{H}) \rightarrow[0,1]$ such that

$$
\sum_{v \in e} h(e) \sim D \text { for all } v \in V(\mathcal{H})
$$

and

$$
\sum_{\{x, y\} \subseteq e \in E(\mathcal{H})} h(e) \leq o(D) \quad \text { for any pair } x, y \in V(\mathcal{H}) .
$$

Randomly choose edge e with probability $h(e)$, the resulted random graph F satisfies:

$$
\mathbb{E} d_{F}(v) \sim(1+o(1)) D \text { and } \mathbb{E} d_{F}(\{x, y\}) \leq o(D)
$$

for all $v, x, y \in V(\mathcal{F})$.

Proof Sketch: how to find such function h

Observation

If we may find $r=n / \ln n$ fractional perfect matchings f_{1}, \ldots, f_{r} such that

$$
\begin{equation*}
\sum_{i=1}^{r} \sum_{\{x, y\} \subseteq e} f_{i}(e) \leq 2 \quad \text { for any }\{x, y\} \in\binom{V(H)}{2}, \tag{1}
\end{equation*}
$$

then $h=\sum_{i=1}^{r} f_{i}$ is a desired function.

Han-Kohayakawa-Person: Greedily Strategy

Suppose that we have f_{1}, \ldots, f_{s}, where $s<r$. If for $\{x, y\} \in\binom{V(\mathcal{H})}{2}$, $\sum_{i=1}^{r} \sum_{\{x, y\} \subseteq e} f_{i}(e)>2$, then we delete all edges containing $\{x, y\}$.

Proof Sketch: how to find such function h

Write $\psi_{s}=\sum_{i=1}^{s} f_{s}$. Define

$$
A_{s}=\left\{\left.\{x, y\} \in\binom{V(\mathcal{H})}{2} \right\rvert\, \sum_{\{x, y\} \subseteq e} \psi_{s}(e) \geq 2\right\}
$$

Let G be a graph with vertex set $V(\mathcal{H})$ and edge set A_{s}. Since $\sum_{x \in e} \psi_{s}(e)=s<n / \ln n$, then $\triangle(G) \leq(k-1) s<(k-1) n / \ln n$.

Proof Sketch: how to find such function h

Write $\psi_{s}=\sum_{i=1}^{s} f_{s}$. Define

$$
A_{s}=\left\{\left.\{x, y\} \in\binom{V(\mathcal{H})}{2} \right\rvert\, \sum_{\{x, y\} \subseteq e} \psi_{s}(e) \geq 2\right\}
$$

Let G be a graph with vertex set $V(\mathcal{H})$ and edge set A_{s}. Since $\sum_{x \in e} \psi_{s}(e)=s<n / \ln n$, then $\triangle(G) \leq(k-1) s<(k-1) n / \ln n$.

Let

$$
E_{s}=\left\{e \in E(\mathcal{H}) \mid \exists\{x, y\} \in A_{\text {s }} \text { s.t. }\{x, y\} \subseteq e\right\} .
$$

Then

$$
\triangle\left(\mathcal{H}-E_{s}\right) \geq\binom{ n-1}{k-1}-\binom{n-m}{k-1}-((k-1) n / \ln n) * n^{k-2} .
$$

Finding f_{1} - More Definitions

Definition of Fractional Vertex Cover

Let $\omega: V(G) \rightarrow[0,1]$ such that $\sum_{x \in e} \omega(x) \geq 1$ for all $e \in E(G)$. Then ω is called a fractional vertex cover

Minimum Fractional Vertex Cover

ω is called minimum fractional vertex cover if $\sum_{e \in E(G)} \omega(e) \leq$ $\sum_{e \in E(G)} \omega^{\prime}(e)$ for any fractional cover ω^{\prime}.
$\sum_{x \in V(G)} \omega(x)$ is called the size of vertex cover ω.
Let $v c(G)$ denote the size of minimum fractional vertex cover of G.

Proof Sketch - Finding f_{1}

(1) Let $\omega: V(\mathcal{H}) \rightarrow[0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega\left(v_{1}\right) \geq \cdots \geq \omega\left(v_{t}\right)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.

Proof Sketch - Finding f_{1}

(1) Let $\omega: V(\mathcal{H}) \rightarrow[0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega\left(v_{1}\right) \geq \cdots \geq \omega\left(v_{t}\right)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.
(3) Let $C l(\mathcal{H})$ be a k-graph with vertex set $V(\mathcal{H})=[n] \cup Q$ and edge set

$$
E(C l(\mathcal{H}))=\left\{\left.S \in\binom{Q \cup[n]}{k} \right\rvert\, \sum_{x \in S} \omega(x) \geq 1\right\} .
$$

Proof Sketch - Finding f_{1}

(1) Let $\omega: V(\mathcal{H}) \rightarrow[0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega\left(v_{1}\right) \geq \cdots \geq \omega\left(v_{t}\right)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.
(2) Let $C l(\mathcal{H})$ be a k-graph with vertex set $V(\mathcal{H})=[n] \cup Q$ and edge set

$$
E(C l(\mathcal{H}))=\left\{\left.S \in\binom{Q \cup[n]}{k} \right\rvert\, \sum_{x \in S} \omega(x) \geq 1\right\} .
$$

(0) \mathcal{H} is a subgraph of $C l(\mathcal{H})$ and

$$
\begin{aligned}
\sum_{v \in V(\mathcal{H})} \omega(v) & =v c(\mathcal{H})=\nu_{f}(\mathcal{H}) \\
& \leq \nu_{f}(C l(\mathcal{H})=v c(C l(\mathcal{H}))) \leq \sum_{v \in V(\mathcal{H})} \omega(v)
\end{aligned}
$$

Proof Sketch - Finding f_{1}

(1) Let $\omega: V(\mathcal{H}) \rightarrow[0,1]$ be a minimum fractional vertex cover of \mathcal{H} such that $\omega\left(v_{1}\right) \geq \cdots \geq \omega\left(v_{t}\right)$ for $1 \leq i \leq t$ and $\omega(1) \geq \cdots \geq \omega(n)$.
(2) Let $C l(\mathcal{H})$ be a k-graph with vertex set $V(\mathcal{H})=[n] \cup Q$ and edge set

$$
E(C l(\mathcal{H}))=\left\{\left.S \in\binom{Q \cup[n]}{k} \right\rvert\, \sum_{x \in S} \omega(x) \geq 1\right\} .
$$

(0) \mathcal{H} is a subgraph of $C l(\mathcal{H})$ and

$$
\begin{aligned}
\sum_{v \in V(\mathcal{H})} \omega(v) & =v c(\mathcal{H})=\nu_{f}(\mathcal{H}) \\
& \leq \nu_{f}(C l(\mathcal{H})=v c(C l(\mathcal{H}))) \leq \sum_{v \in V(\mathcal{H})} \omega(v)
\end{aligned}
$$

(1) So it is sufficient to show that $C l(\mathcal{H})$ has a (fractional) perfect matching.

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;
(2) If $N_{C l(\mathcal{H})}(\{n\})-Q$ has a matching of size $\frac{1}{k}(n-(k-1) t)$, then
$C l(\mathcal{H})-Q$ has a matching M of size $\frac{1}{k}(n-(k-1) t)$;
we may extend M into a perfect matching of $C l(\mathcal{H})$.

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;
(2) If $N_{C l(\mathcal{H})}(\{n\})-Q$ has a matching of size $\frac{1}{k}(n-(k-1) t)$, then $C l(\mathcal{H})-Q$ has a matching M of size $\frac{1}{k}(n-(k-1) t)$; we may extend M into a perfect matching of $C l(\mathcal{H})$.
(0) If $N_{C l(\mathcal{H})}(\{n\})-Q$ contains no matching of size $\frac{1}{k}(n-(k-1) t)$, then $N_{C l(\mathcal{H})}(\{n\})-Q$ is close to $H(n, m)$; [Lu, Yu and Yuan]

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;
(2) If $N_{C l(\mathcal{H})}(\{n\})-Q$ has a matching of size $\frac{1}{k}(n-(k-1) t)$, then $C l(\mathcal{H})-Q$ has a matching M of size $\frac{1}{k}(n-(k-1) t)$; we may extend M into a perfect matching of $\mathrm{Cl}(\mathcal{H})$.
(0) If $N_{C l(\mathcal{H})}(\{n\})-Q$ contains no matching of size $\frac{1}{k}(n-(k-1) t)$, then $N_{C l(\mathcal{H})}(\{n\})-Q$ is close to $H(n, m)$; [Lu, Yu and Yuan]
(-) $N_{C l(\mathcal{H})}(\{n\})$ is close to $H(n+t, m+t)$;

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;
(2) If $N_{C l(\mathcal{H})}(\{n\})-Q$ has a matching of size $\frac{1}{k}(n-(k-1) t)$, then $C l(\mathcal{H})-Q$ has a matching M of size $\frac{1}{k}(n-(k-1) t)$; we may extend M into a perfect matching of $\mathrm{Cl}(\mathcal{H})$.
(0) If $N_{C l(\mathcal{H})}(\{n\})-Q$ contains no matching of size $\frac{1}{k}(n-(k-1) t)$, then $N_{C l(\mathcal{H})}(\{n\})-Q$ is close to $H(n, m)$; [Lu, Yu and Yuan]
(-) $N_{C l(\mathcal{H})}(\{n\})$ is close to $H(n+t, m+t)$;
(0) We greedily find a matching M_{1}. Then we find a matching M_{2} of size $\frac{1}{k-1}(n+t)-\left|M_{1}\right|$ in $N_{C l(H)-V\left(M_{1}\right)}(n)$ and so obtain a matching M_{2}^{\prime} of $C l(H)-V\left(M_{1}\right)-\{n\}$;

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;
(2) If $N_{C l(\mathcal{H})}(\{n\})-Q$ has a matching of size $\frac{1}{k}(n-(k-1) t)$, then $C l(\mathcal{H})-Q$ has a matching M of size $\frac{1}{k}(n-(k-1) t)$; we may extend M into a perfect matching of $\mathrm{Cl}(\mathcal{H})$.
(If $N_{C l(\mathcal{H})}(\{n\})-Q$ contains no matching of size $\frac{1}{k}(n-(k-1) t)$, then $N_{C l(\mathcal{H})}(\{n\})-Q$ is close to $H(n, m)$; [Lu, Yu and Yuan]
(-) $N_{C l(\mathcal{H})}(\{n\})$ is close to $H(n+t, m+t)$;
(0) We greedily find a matching M_{1}. Then we find a matching M_{2} of size $\frac{1}{k-1}(n+t)-\left|M_{1}\right|$ in $N_{C l(H)-V\left(M_{1}\right)}(n)$ and so obtain a matching M_{2}^{\prime} of $C l(H)-V\left(M_{1}\right)-\{n\}$;
(We extend $M_{1} \cup M_{2}^{\prime}$ into a perfect matching of \mathcal{H}.

Proof Sketch - Finding f_{1}

(1) $N_{C l(\mathcal{H})}(\{n\}) \subseteq N_{C l(\mathcal{H})}(\{i\})$ for $i \in[n]$;
(2) If $N_{C l(\mathcal{H})}(\{n\})-Q$ has a matching of size $\frac{1}{k}(n-(k-1) t)$, then $C l(\mathcal{H})-Q$ has a matching M of size $\frac{1}{k}(n-(k-1) t)$; we may extend M into a perfect matching of $C l(\mathcal{H})$.
(If $N_{C l(\mathcal{H})}(\{n\})-Q$ contains no matching of size $\frac{1}{k}(n-(k-1) t)$, then $N_{C l(\mathcal{H})}(\{n\})-Q$ is close to $H(n, m)$; [Lu, Yu and Yuan]
(-) $N_{C l(\mathcal{H})}(\{n\})$ is close to $H(n+t, m+t)$;
(0) We greedily find a matching M_{1}. Then we find a matching M_{2} of size $\frac{1}{k-1}(n+t)-\left|M_{1}\right|$ in $N_{C l(H)-V\left(M_{1}\right)}(n)$ and so obtain a matching M_{2}^{\prime} of $C l(H)-V\left(M_{1}\right)-\{n\}$;
(0) We extend $M_{1} \cup M_{2}^{\prime}$ into a perfect matching of \mathcal{H}.

- Thus \mathcal{H} has a fractional perfect matching.

Thanks for your attention!

